Physiological adaptations to altitude

improvement in performance could also be explained by other mechanisms involving muscular, hormonal or respiratory parameters as improvement in locomotion economy, muscle buffering capacity, or ventilatory efficiency. Indeed, the expert scientists in the field have recently been debating whether or not the benefits of altitude training are mediated primarily by an increased RBC (4).

Physiological adaptations to altitude

Altitude induces hypoxia (an inadequate supply of oxygen to body tissues) and arises as a result of a reduction in the inspired oxygen pressure (PiO2). PiO2 decreases with increasing altitude; at sea level PiO2 is 149mmHg, but PIO2 is only about 50mmHg on the top of the Mount Everest – ie each lungful of air contains only around a third of the oxygen compared to sea level.

FULL ARTICLE

This entry was posted in Equine training, Mountaineering, Sports and tagged , . Bookmark the permalink.